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The origin of the stationary frontal wave packet spontaneously generated in rotating
and stably stratified vortex dipoles is investigated through high-resolution three-
dimensional numerical simulations of non-hydrostatic volume-preserving flow under
the f -plane and Boussinesq approximations. The wave packet is rendered better at
mid-depths using ageostrophic quantities like the vertical velocity or the vertical shear
of the ageostrophic vertical vorticity. The analysis of the origin of vertical velocity
anomalies in shallow layers using the generalized omega-equation reveals that these
anomalies are related to the material rate of change of the ageostrophic differential
vorticity, which in shallow layers are themselves related to the large-scale ageostrophic
flow along the dipole axis, and in particular, to the advective acceleration. It is found
that on the anticyclonic side of the dipole axis the combined effect of the speed and
centripetal accelerations causes an anticyclonic rotation of the horizontal ageostrophic
vorticity vector in a time scale of about one inertial period. These facts support the
hypothesis that the origin of the stationary and spontaneously generated frontal wave
packet at mid-depths is the large acceleration of the fluid particles as they move along
the anticyclonic side of the dipole axis in shallow layers.

1. Introduction
Inertia–gravity waves (IGWs) often develop in rotating stratified fluids such as the

Earth’s atmosphere and oceans (e.g. Miropol’sky 2001; Nappo 2002). The origin of
these IGWs is usually external to the fluid itself. Some well-known examples are, in the
case of oceanic IGWs, the forcing due to fluctuations of atmospheric pressure, changes
in wind stress, and buoyancy flow fluctuations at the ocean surface. At the ocean
floor and in the atmospheric boundary layer terrain-generated IGWs can develop in
the form of lee waves and mountain waves. Besides this external wave generation,
spontaneous generation of IGWs, that is without intervention of causes external to
the otherwise balanced ocean and atmosphere interior flow, is also possible. This
spontaneous IGW emission has been numerically simulated in barotropic unstable
flows in rotating shallow water (Ford 1994) as well as numerically assessed in rotating
two-layer shear flows (Williams, Read & Haine 2003). In the atmosphere spiral bands
in tropical cyclones have been interpreted as a manifestation of spontaneous IGW
generation (Chow, Chan & Lau 2002), and gravity wave generation found during
the evolution of mesoscale convective cloud clusters (Lane, Reeder & Clark 2001),
tropical cyclones (Pfister et al. 1993), frontogenesis (Griffiths & Reeder 1996; Reeder &
Griffiths 1996; Snyder, Skamarock & Rotunno 1993), geostrophic adjustment (Fritts &
Luo 1992; Luo & Fritts 1993), and baroclinic instability (O’Sullivan & Dunkerton
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1995). Experimental evidence of spontaneous IGW generation has been reported from
laboratory experiments in rotating two-layer flows (Williams, Haine & Read 2005)
as well as from observations in the atmosphere (Bosart, Bracken & Seimon 1998;
Plougonven, Teitelbaum & Zeitlin 2003, Lane et al. 2004). Spontaneous generation of
IGWs has been also numerically simulated using three-dimensional primitive equation
models of baroclinic waves in the atmosphere (O’Sullivan & Dunkerton 1995; Zhang
2004). Though the Rossby number R was larger than unity in some of the vortical
flows exciting IGWs (Ford 1994; Ford, McIntyre & Norton 2000; Saujani & Shepherd
2002), there is increasingly persuasive evidence that spontaneous generation of IGWs
will occur, as long as these are allowed by the dynamical equations used, even for
flows initiated from perfectly well-balanced conditions (Lorenz & Krishnamurthy
1987; Farge & Sadourny 1989; Yuan & Hamilton 1994; Yavneh & McWilliams
1994; McWilliams & Yavneh 1998; Vanneste & Yavneh 2004).

Using a precise method for decomposing the flow into its balanced and unbalanced
components Viúdez & Dritschel (2004) have found that small-amplitude IGWs are
spontaneously generated, from rotating static and inertially stable unsteady baroclinic
balanced flows (R < 1 and Froude number F < 1), in the form of three-dimensional
wave packets. These wave packets propagate away from the wave sources and
cause spiral wave patterns in the far field of the same sense of spiralling, cyclonic
or anticyclonic, as the moving IGW sources (Viúdez 2006). The precise physical
mechanism that causes the emission of these wave packets remains unclear, to a
large extent because the balanced flow is unsteady and the IGW emission is discrete.
There are however several geophysical coherent three-dimensional vortex structures,
the simplest being the baroclinic dipole, where the spontaneous IGW emission is
continuous and the wave packet remains steady in the reference frame relative to the
moving dipole (Viúdez 2006, 2007). These characteristics make the frontal wave packet,
referred to in this way because it develops at the front of the dipolar structures, an
exceptional case to investigate the physical mechanism responsible for spontaneous
IGW generation. The existence of the frontal wave packet has also been recently
and independently described using numerical techniques very different to the ones
used here (Snyder et al. 2007). This paper describes the results of the search for
a mechanistic explanation of the frontal wave packet using high-resolution three-
dimensional numerical simulations of non-hydrostatic volume-preserving flow under
the f -plane and Boussinesq approximations. The theoretical background, numerical
model and initial conditions are explained in § 2.

There are at least three key features important for an understanding of the frontal
wave packet. The first feature is the initial wave packet generation forced by the
vortical flow or, in other words, the ‘first push’ that triggers the oscillatory motion
of the fluid particles. It is suggested here that in the frontal wave packet this initial
generation is caused mainly by the large-scale dipolar flow in shallow layers along the
anticyclonic side of the dipole axis. When the fluid particles move along the dipole
axis they initially accelerate as they enter from the rear, and subsequently decelerate
as they reach the frontal part. The time scale in which this perturbation takes place
is estimated as the ratio L/U between the horizontal dipole scale L and the typical
fluid velocity along the dipole axis U relative to the moving dipole reference frame. If
this time scale has an order of magnitude similar to the inertial period 2π/f , where
f is the Coriolis frequency, then this perturbation triggers the first quasi-inertial
oscillation of the fluid particles. The main objective of this paper is to make this
idea precise and show that this is indeed the case in the frontal wave packet. A first
difficulty is that, besides the large-scale structure of the initial wave perturbation,
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other large-scale structures, related to quasi-geostrophic (QG) balanced mesoscale
dynamics and not related to the wave generation, coexist in the dipolar flow. Thus, it
is necessary to distinguish the different origins of these similar large-scale structures.
As is typical in rotating stratified flows, the amplitude of the horizontal velocity
perturbation is very small relative to the amplitude of the vortical horizontal velocity,
which is largely geostrophic or cyclostrophic in the dipole. Hence it is convenient to
analyse the wave perturbation in terms of smaller ageostrophic quantities, such as the
vertical velocity perturbation, which may become of the same order of magnitude as
the balanced vertical velocity.

The vertical velocity field is examined at different depths (§ 3) and it is found
that, while the frontal wave packet clearly develops at mid-depths, some large-scale
patterns in the vertical velocity develop in shallow layers along the dipole axis. These
vertical velocity patterns seem to be the initial generation of the frontal wave, which
is first excited with small wavenumbers. The origin of these large-scale perturbations
in the vertical velocity is then explored using the generalized omega-equation (§ 4),
which is interpreted as an equation for the material rate of change of the vertical shear
of the ageostrophic vertical vorticity (ζ ′

z). It is found that these velocity perturbations
in shallow layers are related to the advection of ζ ′

z, and are therefore not QG
contributions. This strongly supports their wave-like nature since IGWs are not
permissible in the QG dynamics.

The second key feature in understanding the frontal wave packet is the process
by which motion is transferred from the large spatial scales of the initial wave
perturbation to the short spatial scales typical of the unbalanced wave flow. In the
frontal wave packet this process is simply particle advection by a decelerating flow.
When the fluid particle, which is experiencing small-amplitude oscillations, continues
its background deceleration as it leaves the dipole centre, its horizontal wavenumber
decreases as ∼ u−1 (where u is the balanced horizontal fluid velocity relative to the
moving dipole) due to the decreasing horizontal particle displacement per oscillation
period. This kinematic effect is similar to that of a pendulum oscillating with constant
frequency along the y-axis and being simultaneously transported with velocity u along
the x-axis. Kinematically, as u slowly decreases, the wavenumber in the x-direction
(k) must increase since the x-displacement per unit time (or per oscillating period)
decreases. It is in this regime where the frontal wave packet approximately satisfies
IGW solutions in the background flow. In § 5 the ageostrophic shear vorticity is
analysed and related to the ageostrophic motion, and in particular related to the flow
acceleration along the dipole axis at shallow depths. The evolution of the frontal
wave packet along the dipole axis at mid-depths and its intrusion inside the vortices
is described from time series of the total vertical velocity (§ 6).

Finally, a third key feature of the frontal wave packet is the wave amplitude
damping. Obviously the wavenumber cannot increase indefinitely. Numerically a
finite limit is reached when the wavenumber becomes similar to the maximum
wavenumber allowed by the model spatial discretization. At this time the wave
amplitude is damped by numerical diffusion as a way to prevent grid-size numerical
instability. Wave breaking and turbulent diffusion, and ultimately molecular diffusion,
would in nature damp the frontal wave packet at very high wavenumbers.

2. Theoretical background, numerical model and initial conditions
2.1. Theoretical background and numerical model

The three-dimensional baroclinic stably stratified volume-preserving non-hydrostatic
flow, under the f -plane and Boussinesq approximations, is simulated using a triply
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periodic numerical model (Dritschel & Viúdez 2003) initialized with the potential
vorticity (PV) initialization approach (Viúdez & Dritschel 2003). The theoretical basis
of the numerical model is explained in detail in the references above and succinctly
here in the Appendix, and only a brief summary is given next to introduce the required
symbol definitions and mathematical expressions. We analyse results from numerical
simulations with 1283 (hereafter case 1, C1) and 5123 (hereafter case 2, C2) grid points,
having 128 and 512 isopycnals, respectively. The PV is represented by contours on
isopycnal surfaces. The domain has a vertical extent LZ =2π (which defines the unit
of length) and horizontal extents LX = LY = cLZ , where c ≡ 10 is the ratio of the
background Brunt–Väisälä frequency to the Coriolis frequency: c ≡ ε−1 ≡ N/f . The
mean buoyancy period (Tbp ≡ 2π/N) is set as the unit of time (thus N ≡ 2π). One
inertial period (Tip ≡ 2π/f ) equals 10 Tbp .

The vertical displacement of isopycnals is D(x, t) ≡ z − d(x, t), where
d(x, t) ≡ (ρ(x, t) − ρ0)/�Z is the depth of an isopycnal located at x at time t in the
reference density configuration defined by ρ0 + �Zz, where ρ is the mass density,
and ρ0 > 0 and �Z < 0 are constants which do not need to be specified in the
Boussinesq approximation. The squared mean Brunt–Väisälä frequency N2 ≡ −α0 g �Z ,
where α0 ≡ 1/ρ0 and g is the acceleration due to gravity. Static instability occurs
when the stratification number Dz ≡ ∂D/∂z > 1. The Rossby number R ≡ ζ/f ,
and the Froude number F ≡ ωh/N, where ωh ≡ |ωh| and ζ are the horizontal
and vertical components of the relative vorticity ω = ωh + ζ k, respectively, and
N2 ≡ −α0 g ∂ρ/∂z = N2(1−Dz) is the squared total Brunt-Väisälä frequency. Subscript
h denotes the horizontal component. The state variables are the components of
the vector potential ϕ ≡ (ϕ, ψ, φ) from which both the three-dimensional velocity
u = (u, v, w) and isopycnal vertical displacement D are obtained:

u = −f ∇ × ϕ , D = −ε2∇ · ϕ. (2.1)

Let χ̃ ≡ χ/f for any quantity χ . The numerical model integrates three equations.
Two are for the rate of change of the dimensionless horizontal ageostrophic vorticity

Ah = (A, B) ≡ ω̃h − c2∇hD ≡ ω̃h − ω̃
g
h ≡ ω̃′

h

= [−∇ × (∇ × ϕ) + ∇(∇ · ϕ)]h = ∇2ϕh = (∇2ϕ, ∇2ψ) , (2.2)

where ω
g
h is the horizontal geostrophic vorticity. The material rate of change of Ah

(see (A 19)) is

dAh

dt
= −f k × Ah + (1 − c2)∇hw + ω̃ · ∇uh + c2∇hu · ∇D. (2.3)

The above equation is numerically integrated using an explicit leap-frog scheme,
together with a weak Robert–Asselin time filter to avoid the decoupling between
even and odd time levels. Spatial derivatives are carried out in the spectral space.
A biharmonic hyperdiffusion term, producing a small damping rate (e folding) per
inertial period at the highest wavenumber equal to ef = 50 (C1) and ef =200 (C2) is
added to (2.3) to avoid the generation of grid-size noise.

The third equation is the explicit material conservation of the PV anomaly � by
contour advection on isopycnals (d�/dt = 0), where

� ≡ Π − 1 ≡ (ω̃ + k) · (k − ∇D) − 1 = ζ̃ − Dz − ω̃ · ∇D, (2.4)

and Π ≡ (ω̃ + k) · ∇d is the dimensionless total PV. The locations of the PV contours
are numerically integrated in time using a standard third-order three-time-level
Adams–Bashforth scheme. The horizontal potentials ϕh = (ϕ, ψ) are recovered from
the inversion, in the spectral space, of Ah = ∇2ϕh, while the vertical potential φ is
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obtained from the inversion of the definition of � (2.4) in terms of the potentials,
� =� (ϕ, ψ, φ).

The dimensionless horizontal ageostrophic vorticity Ah is related to the dimension-
less horizontal ageostrophic pseudovorticity ζ̃ ′

h ≡ [∇ × u′
h]h/f = (−∂v/∂z, ∂u/∂z)/f ,

that is the horizontal vorticity of the horizontal ageostrophic velocity u′
h, also called

the thermal-wind imbalance vector, by

Ah = ζ̃ ′
h − k × ∇hw̃. (2.5)

Two quantities relevant in the analysis of the IGWs are the vertical shear of
the ageostrophic vertical vorticity ζ ′

z ≡ ∂ζ ′/∂z, where ζ ′ ≡ ζ − ζ g is the ageostrophic
vertical vorticity, and the Laplacian of w, ∇2w. These two ageostrophic quantities
(divided by f ) are, respectively, the (negative) divergence and curl of Ah:

ζ̃ ′
z = −∇h · Ah, ∇2w̃ = −k · ∇h × Ah, (2.6a, b)

and are therefore independent of the vertical potential φ.

2.2. The initial conditions

The baroclinic dipoles are initiated as two ellipsoids of oppositely signed � . The
number of initial PV contours in the middle isopycnal (isopycnal index il = 65 and
il =257 in the C1 and C2 simulations, respectively) of each vortex is nc = 20 (C1) and
nc = 60 (C2). The PV anomaly � varies from � ∼= 0 (outermost surface) to extrema
� ± = ±0.85 (C1), and (� −, �+) = (−0.8, 1.8) (C2), in the vortex cores. The � jump
is fixed for the contours in every vortex δ� ± = |� ±|/nc. Initially the outermost �

ellipsoidal layer has horizontal major and minor semi-axes (a±
X, a

±
Y ) = (1.4, 1.2)c, and

vertical semi-axes (a+
Z , a−

Z ) = (1.2, 0.52) (C1). The same values were used in C2 except

that the initial vertical extents of the vortices were equal, a
±
Z = 1.2. Further details

on the PV configuration of the three-dimensional ellipsoids are given in Viúdez &
Dritschel (2003). The initial distance between vortex centres is 2a

±
Y + 0.01c. The �

ellipsoids are initially defined on the isopycnal space (or, equivalently, in the physical
space with flat isopycnals).

During the initialization period tI of the PV initialization method (here we set
tI = 5 Tip) the PV anomaly grows smoothly for every fluid particle, i.e. in a Lagrangian
way, so that both u and D grow smoothly as well. Therefore, during the initialization
period (0 � t � tI ), and due to the thermal-wind relation, the isopycnals in the
anticyclone stretch and those in the cyclone shrink, in such a way that at t = tI both
vortices have similar vertical extents in C1. In C2 the vertical extent of the anticyclone
in larger than that of the cyclone. This has little importance for the development of
the frontal wave however, which is a robust phenomenon in dipolar flows with |R| � 1.
The extreme Rossby numbers (Rmin, Rmax) were (−0.73, 0.48) and (−0.82, 0.81) in C1
and C2, respectively, while the maximum Froude number Fmax(t) ⊂ [0.43, 0.48] for
t = [5, 50] Tip (C1, with time average and standard deviation 〈Fmax〉 =0.45 ± 0.01),
and Fmax(t) ⊂ [0.41, 0.75], for t = [5, 17] Tip (C2, with 〈Fmax〉 = 0.56 ± 0.08). As we
describe below, the frontal wave packet is generated in both cases.

3. The frontal wave packet at different depths
In Viúdez (2007) the frontal wave packet was extracted from the balanced dipolar

flow using the optimal PV balance approach. An analysis of the extracted unbalanced
flow revealed that the wave packet (i) is stationary relative to the translating dipole,
(ii) has wavenumbers that depend on the horizontal and vertical derivatives of the
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Figure 1. Horizontal distribution of vertical velocity w(x, y) at (a) z 	 −0.2 (iZ = 240, w ∈
[−6.9, 5.1] × 10−3), and (b) z 	 −0.9 (iZ = 180, w ∈ [−5.2, 8.3] × 10−3), for C2 (t = 17 Tip).
The PV contours � = ±0.5, the along-dipole axis, and the vertical section V are included for
reference. The labels denote: cyclone (+), anticyclone (−), upwelling (u), downwelling (d ), spiral
wave (s), frontal wave (f ), and heading waves (h).

background dipolar flow, and (iii) is generated somewhere in the upper layer (z � 0),
predominantly on the anticyclonic side of the dipole, and afterwards propagates
downward (until the stationary state is reached). Since the domain is triply periodic
a second wave packet develops at z � 0 and propagates upwards. The optimal PV
balance (OPVB) approach provides, from a given three-dimensional PV field, a
flow (namely, the OPVB vector potential ϕb) having only those IGWs that have been
spontaneously generated during the process of acquiring PV (during a time interval set
equal to the initialization period tI = 5 Tip). Therefore, the OPVB approach correctly
extracted that part of the frontal wave packet (through the imbalance vector potential
ϕi ≡ ϕ − ϕb) located at the dipole head, away from the dipole centre, because the
frontal wave is not spontaneously generated locally there in a short time period, i.e.
shorter than tI . However, if the first waves of the frontal wave are spontaneously
generated in the upper layers of the dipole centre, then the OPVB approach only
partially extracted the frontal wave packet: the first crests and troughs remained in the
OPVB flow, since these early waves are unlikely to obey a dynamics separable from
the dynamics of the total flow. This is not a weakness of the OPVB approach, which
works very well after the wave emission has taken place, but it is due to the fact that,
in this case, any hypothetical and potentially obtainable balanced state (in the sense
of being free of waves) will not remain so for an infinitesimally small period of time.
Once the IGWs propagate forward and downwards, arriving at the dipole head, they
obey a separate dynamics, that is, the dynamics of IGWs in a background flow, and
are therefore separable from the dipole balanced flow. Generally speaking, the initial
spontaneous generation of waves is a process essentially dependent on the vortical
flow and therefore seems to be inseparable. As a consequence, the initial stages of the
frontal wave are identified better in the total vertical velocity w ≡ −f k · ∇ × ϕ than
in the unbalanced vertical velocity wi ≡ −f k · ∇ × ϕi .

In the baroclinic dipole, as the fast fluid particles close to the surface layers enter
through the rear part of the dipole axis, they first ascend (w > 0, upwelling), and
subsequently descend (w < 0, downwelling) as they leave the dipole axis (labels u and
d, respectively, in the horizontal and vertical distributions of w in figures 1a and 2).
A second wave (crest and trough) of smaller amplitude is also observed at the dipole
head in the shallow layer shown in figure 1(a). The main hypothesis of this work is
that the frontal wave packet is generated in these upper layers by the accelerating
flow, the initial waves of the frontal wave packet having a small wavenumber and
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Figure 2. Vertical distribution of vertical velocity w(y, z) crossing the frontal wave along the
vertical section V (figure 1b) for C2 (w ∈ [−9.8, 9.8] × 10−3, t = 17 Tip). The labels denote:
upwelling (u), downwelling (d ), frontal wave (f ), and heading wave (h). The upper (U,
z 	 −0.2, iZ = 240) and lower (L, z 	 −0.9, iZ = 180) horizontal planes in figures 1(a) and 1(b),
respectively, are included.
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Figure 3. Horizontal distributions of w(y, z) for C2 at depths (a, b) z 	 −0.2 (w ∈
[−4.4, 2.9] × 10−3), and (c, d ) z 	 −1.2 (w ∈ [−3.0, 3.6] × 10−3), and times t = 4 Tip and t = 5 Tip .
The PV contours � = ±0.5 at z = 0 are included. The labels denote: upwelling (u), downwelling
(d ), and frontal wave (f ).

therefore a large-scale pattern (locations u and d in figures 1a and 2), and then
propagates forward and downward, the wavenumber increasing as the horizontal
velocity decreases, resulting in a frontal wave with a clear wave packet structure
in deep layers (location f in figures 1b and 2). The initial velocity and density
perturbations are subsequently transmitted to the fluid particles, rotating inside the
vortices and temporarily located nearby the dipole axis, which start oscillating causing
the spiral wave pattern (locations s in figure 1b) clearly visible in the cyclone. The
time evolution of these spiral waves is described in more detail in § 6.

The early evolution of the wave packet is shown in terms of w at two different
levels in figure 3. At t = 4 Tip , that is, 1 Tip before the initialization time is completed,
the incipient u and d regions are already noticeable in shallow layers (figure 3a),
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h

h

Q–

Q+

Q+

Q–

u
ddd

f

Figure 4. Horizontal distribution of vertical velocity w(x, y) at z 	 −0.58 for C2 (iZ =210,
w ∈ [−10, 6.6] × 10−3, contour interval δw = 10−3). The labels denote: upwelling (u),
downwelling (d ), frontal wave (f ), heading waves (h), and the quadrupolar pattern of mesoscale
vertical velocity (Q±). Horizontal extent δx = δy =2πc.

while the frontal wave is absent in deep layers (figure 3c). At the end of the initiali-
zation time (t = 5 Tip) the u and d regions are already fully developed (figure 3b),
while the frontal wave packet starts to have a very small amplitude in deep layers
(figure 3d ). Thus, if it is accepted that the upwelling and downwelling regions in
shallow layers are the initial waves of the frontal wave packet, then the wave packet
propagates, during the short time scale of a few inertial periods, from the upper to
the lower layers. The subsequent development at t � 5 Tip of the frontal wave in deep
layers, and in particular the longer evolution of its spiral branches inside the vortices,
is described in detail in § 6. Once fully developed, the frontal wave packet is stationary
relative to the dipole reference frame, so it does not propagate in this frame.

In the anticyclone the spiral wave pattern is distorted by the spontaneous generation
of heading waves. These waves (location h in figures 1b and 2) are generated by phase
oscillations of the baroclinic vortices, or dipole heading, particularly in this case by
the anticyclone. In this case the dipole heading has a periodicity of approximately
4 Tip , which coincides with the periodicity of the discrete heading wave generation,
as it is confirmed later in § 6 from time series of horizontal distributions of w.
Two wave packets of heading waves, emitted at two different times and propagating
southward, are clearly noticeable in figure 1(b). The dipole heading and the generation
of propagating heading waves seem to be independent of the stationary frontal wave
packet and will not be addressed further here.

Simultaneously with the spontaneous generation of wave motion, the fluid particles
have the balanced vertical velocity typical of the mesoscale background dipolar flow,
consisting of the quadrupolar pattern seen as four large-scale light and dark areas
broadly located at the apices of the vortices in figure 1(b). This QG vertical velocity
is also clearly noticeable, together with the wave motion, in the discrete w contours
at mid depth in figure 4.
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To investigate the hypothesis that the frontal wave packet is generated in the upper
layers, where it has a large-scale pattern, by the background dipole flow acceleration,
an analysis of the origin of this large-scale vertical velocity structure at the dipole
centre is carried out in the next section using the generalized omega-equation (ω-
equation). The objective is to show that these extreme w values (labelled u and d ),
although having a large spatial extent, do not have a QG origin, are therefore different
from the other w extrema, and are mainly related to the material rate of change of
the differential ageostrophic vertical vorticity ζ̃ ′

z.

4. Analysis of the vertical velocity using the generalized ω-equation
The generalized ω-equation (Viúdez, Tintoré & Haney 1996) can be interpreted as

an equation for the material rate of change of the differential ageostrophic vertical
vorticity ζ̃ ′

z and consequently expressed as

dζ̃ ′
z

dt
=

∂ζ̃ ′
z

∂t
+ uh · ∇hζ̃

′
z + w

∂ζ̃ ′
z

∂z

= −∇h · [2 Qh + c2(Dz − 1)∇hw] + (ζ̃ + 1)wzz + ζ̃ ′
hz · ∇hw − ζ̃ ′

h · ∇2
huh

= −2∇h · Qh + c2∇2
hw + wzz︸ ︷︷ ︸
Lq{w}

− c2∇h · (Dz∇hw)︸ ︷︷ ︸
T3

+ ζ̃wzz + ζ̃ ′
hz · ∇hw︸ ︷︷ ︸

T2

− ζ̃ ′
h · ∇2

huh︸ ︷︷ ︸
T1

, (4.1)

where the horizontal vector Qh ≡ c2∇huh · ∇hD, and the subscript z denotes the partial
derivative with respect to z. Using (2.6a) equation (4.1) can be interpreted as the
horizontal divergence of (2.3). In the QG approximation, the horizontal velocity is
replaced by its geostrophic approximation (uh → ug

h), and assuming that for small
Rossby numbers the flow is both inertially very stable (|ζ̃ | � 1) and statically very
stable (|Dz| � 1), the QG approximation of (4.1) is the Q-vector QG ω-equation

Lq{wq} = 2∇h · Qg
h, (4.2)

where Qg
h ≡ c2∇hug

h · ∇hD is the horizontal geostrophic Q vector, wq is the QG vertical
velocity, and the linear operator Lq ≡ c2∇2

h + ∂zz is the QG Laplacian operator. The
material rate of change of ζ̃ ′

z is neglected. This linear equation is directly solved for
wq by inverting the operator Lq in spectral space.

The horizontal distribution of wq at mid depth (figure 5a) displays the typical
quadrupolar pattern of balanced vertical velocity in dipoles (Pallàs-Sanz & Viúdez
2007). These QG extrema are labelled with symbols Q±. The upwelling and
downwelling regions on the dipole axis (labelled u and d, respectively, in figure 4) are
missing in wq , and are therefore not associated with the QG balanced dynamics.

Furthermore, these upwelling and downwelling motions are not fully explained
by the non-QG forcing of the generalized Q-vector. The solution of the truncated
ω-equation

Lq{wt} = 2∇h · Qh, (4.3)

which differs from (4.2) in that the forcing term includes now the divergence of the
total vector Qh ≡ c2∇huh · ∇hD as in (4.1), is shown at mid depth in figure 5(b).
The horizontal distribution of wt broadly displays, with larger amplitudes, the large-
scale quadrupolar pattern of wq , but differs from w along the dipole axis where it
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Figure 5. Horizontal distribution, for C2, of (a) the QG vertical velocity wq (x, y) (wq ∈
[−2.6, 2.4] × 10−3, and (b) wt (x, y) (wt ∈ [−6.3, 5.2] × 10−3), at z 	 −0.58 (iZ = 210, contour
interval δ = 0.5 × 10−3). The labels Q± indicate the quadrupolar pattern of QG vertical
velocity.

only partially reproduces the upwelling and downwelling motion of w (the contour
interval in figure 5 is half that of figure 4).

We now analyse in detail C1 because the frontal wave packet also develops in
this case, and the lower numerical resolution used avoids the generation of smaller
scale waves, which do not significantly interfere with the frontal wave packet but
may graphically mask the larger scale patterns of interest. At the same time the
lower numerical resolution makes the analysis computationally easier that for C2.
Note however that, owing to the different extreme Rossby numbers for C1 and C2,
significant differences, especially in the vertical velocity, are expected between these
cases. The total vertical velocity w at mid- and shallow depths (figure 6) displays the
quadrupolar pattern of QG extrema similar to those for C2 at the external sides of
the dipole (labelled as Q±) plus other QG extrema in the dipole interior (labelled as
q±), which correspond to the QG vertical velocity wq extrema shown in figure 7(a).
The frontal wave packet is also clearly noticeable in w at mid depth (labelled f
in figure 6a), while two non-QG regions of upwelling and downwelling (labelled u
and d, respectively) occur at mid- and shallow depths on the dipole axis and inside
the anticyclone. The magnitude of w in the regions u and d at a shallow depth
(figure 6b) is larger than at mid depth (figure 6a), where the frontal wave, having
shorter wavelength, is more noticeable however. This is in contrast to the QG extrema,
which at mid depth are larger than at shallow depth, and supports the hypothesis
that these u and d consecutive extrema are in fact related to the first wave of the
frontal wave packet.

The origin of the u and d extrema is not related to the other forcing terms on
the right-hand side of (4.1). The solution wql (superscript ql denotes Q-vector and
Laplacian) of the truncated ω-equation

Lq{wql} = 2∇h · Qh + ζ̃ ′
h · ∇2

huh, (4.4)

which differs from (4.3) by the addition of the Laplacian forcing term ζ̃ ′
h · ∇2

huh

(term T1 in (4.1)) is compared with wq in figure 7(b). The solution wql has a pattern
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Figure 6. Horizontal distribution for C1 of w(x, y) at (a) z 	 −0.49 (iZ = 55, w ∈
[−1.9, 1.7] × 10−3), and (b) z 	 −0.29 (iZ = 59, w ∈ [−1.6, 1.6] × 10−3). Contour interval
δw = 0.2 × 10−3, t = 9 Tip , and horizontal extent (δx, δy) = (3.9, 4.9)c, with the aspect ratio
preserved. The labels Q± and q± indicate the w extrema associated with QG vertical velocity.
The frontal wave packet is also noticeable (labels f ). The PV contours � = ±0.2 are included
for reference.

(a)

Q–
Q+
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q
q+

u
d

(b) (c)

Figure 7. Horizontal distribution for C1 at z 	 −0.49 (iZ = 59) of (a) wq (wq ∈ [−1.3, 1.7] ×
10−3); (b) wql (wql ∈ [−1.5, 1.5] × 10−3); and (c) wv (wv ∈ [−1.5, 1.5] × 10−3). Contour interval
δw = 0.2 × 10−3 and horizontal extent (δx, δy) = (3.9, 4.9)c, with the aspect ratio preserved. The
labels Q± and q± indicate the w extrema associated with the QG vertical velocity. The PV
contours � = ±0.2 are included for reference.

qualitatively similar to wq (figure 7a), and is therefore also unable to reproduce the
u and d vertical motion.

The next vertical velocity field wv (superscript v denotes vertical velocity) that we
consider is a solution of the reduced ω-equation

Lq{wv} = 2∇h · Qh + ζ̃ ′
h · ∇2

huh − ζ̃wzz − ζ̃ ′
hz · ∇hw, (4.5)

which differs from (4.4) in the addition of the forcing terms including the vertical
velocity −ζ̃wzz and −ζ̃ ′

hz · ∇hw (terms T2 in (4.1)), that is, it includes all the terms
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(a)

u d

f

(b)

Figure 8. Horizontal distribution (C1) at z 	 −0.49 (iZ = 59) of (a) wa (wa ∈ [−2.1, 1.8] ×
10−3); and (b) wl (wl ∈ [−2.1, 1.8] × 10−3). Contour interval δw = 0.2 × 10−3 and horizontal
extent (δx, δy) = (3.9, 4.9)c, with the aspect ratio preserved. The labels u and d indicate the
w extrema associated with the first wave of the frontal wave packet, while f indicates the
larger wavenumber location of the frontal wave. The PV contours � = ± 0.2 are included for
reference.

on the right-hand side of (4.1) except c2∇h · (Dz∇hw) (term T3) which is negligible.
The solution wv (figure 7c) reproduces well the QG extrema, and is therefore similar
to wq and wql . It displays two additional extrema, labelled u and d, which are due
to the fact that the new terms in (4.5), −ζ̃wzz and −ζ̃ ′

hz · ∇hw, include now the total
vertical velocity w, which in turn includes the u and d extrema. These terms are
not responsible for the vertical velocity extrema u and d however since in wv these
extrema are clearly of smaller magnitude than those in the total w (figure 6b).

The next vertical velocity wa (superscript a denotes advection) is a solution of the
ω-equation including the same forcing terms as wv plus the horizontal advection of
ζ̃ ′
z, that is, is solution of the almost complete steady ω-equation

Lq{wa} = 2∇h · Qh + ζ̃ ′
h · ∇2

huh − ζ̃wzz − ζ̃ ′
hz · ∇hw − uh · ∇hζ̃

′
z. (4.6)

The field wa (figure 8a) now reproduces both the QG extrema and the upwelling and
downwelling regions on the anticyclone and dipole axis (labels u and d ), as well as
the frontal wave packet (label f ). The vertical advection of ζ̃ ′

z and its local rate of

change, terms w∂ζ̃ ′
z/∂z and ∂ζ̃ ′

z/∂t , respectively, in (4.1), have minor importance in
the vertical motion of the upwelling and downwelling regions since the solution of
(4.6) supplemented on the right-hand side by −∂ζ̃ ′

z/∂t−w∂ζ̃ ′
z/∂z (field wl in figure 8b)

is very similar to wa (figure 8a). The secondary importance of the local rate of change
of ζ̃ ′

z is due to the smallness of the speed of displacement of the dipole (O(U ) ∼ 0.1)
relative to the speed of the fluid particles (O(uh) ∼ 1). Therefore, the relevant quantity
in the ω-equation associated with the vertical motion in the u and d regions is the
material rate of change of ζ̃ ′

z, and particularly, its horizontal advection. This is in
contrast to the other w extrema (Q± and q±) which have a QG origin. The material
rate of change of ζ̃ ′

z is usually of secondary importance in balanced flows where
there is a large cancellation between its horizontal advection and its local rate and
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(a) (b)

Figure 9. Horizontal distribution (C1) at z = 0 (iZ =65) of (a) uh (max{|uh|} = 2.1, contour
interval δuh = 0.25); (b) horizontal advective acceleration uh · ∇huh (max{|uh · ∇huh|} = 0.34,
contour interval δ = 0.05). Only every other vector is plotted.

change so that ζ̃ ′
z is approximately materially conserved (Viúdez & Dritschel 2003).

This cancellation does not occur in the accelerating flow along the dipole axis.

5. The ageostrophic shear vorticity ζ̃ ′
z

In the previous section we have seen the relevance of the material rate of change
of ζ̃ ′

z in the generalized ω-equation and its relation with the vertical velocity. In this
section we describe how the balanced flow in baroclinic dipoles is able to force large
horizontal advection of ζ̃ ′

z in the dipole centre at shallow layers, and that the wave
packet develops as a plane wave with variable wavenumber in the background flow
at deeper layers.

5.1. The ageostrophic shear vorticity in the dipole centre

The rate of change of ageostrophic shear vorticity is related to the time interval a
fluid particle takes to move along the dipole axis relative to the inertial period. Using
(2.6a) we analyse ζ̃ ′

z from the behaviour of Ah = ω′
h.

The magnitude of the horizontal velocity uh ≡ |uh| (figure 9a) has a maximum close
to the dipole centre so that the fluid particles, inside and outside the PV vortices,
accelerate before and decelerate after crossing the dipole centre. The horizontal
advective acceleration is shown in figure 9(b). In C1 the larger accelerations occur
inside the anticyclone. These maxima in the advective acceleration are due to both the
normal centripetal acceleration κu2

h, where κ ≡ k·∇h×s is the streamline curvature and
s ≡ uh/uh is the horizontal unit tangent vector, and the tangent advective acceleration
1
2
s · ∇hu

2
h.

Defining the horizontal normal vector n ≡ k × s, and neglecting the local
acceleration and vertical advection, the rotation of the ageostrophic velocity
u′

h ≡ uh − ug
h is

f k × u′
h

∼= −uh · ∇huh = −1

2

δu2
h

δs
s − κu2

h n, (5.1)
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(a) (b) (c)

Figure 10. Horizontal distribution (C1) at z 	 −0.49 (iZ = 59) of (a) ω̃h (max{|ω̃h|} = 3.4,
δ = 0.5), (b) ω̃

g
h = c2∇hD (max{|ω̃g

h|} = 2.5, δ = 0.5), and (c) Ah = ω̃′
h (max{|Ah|} = 1.3, δ =0.2).

Only every other vector is plotted.

where δ/δs ≡ s · ∇h is the directional derivative along s. The normal component of
(5.1) is the centripetal acceleration

f n · (k × u′
h) = f s · u′

h = f u′
s = f (uh − ug

s )
∼= −κu2

h, (5.2)

where ug
s ≡ s · ug

h is the alongstream component of ug
h. The quantity |κ |u2

h is the
centripetal acceleration magnitude. Thus, in the vortices away from the dipole axis,
the flow is supergeostrophic (u′

s > 0) in the anticyclone (κ < 0), but subgeostrophic
(u′

s < 0) in the cyclone (κ > 0).
The tangent component of (5.1) is

f s · (k × u′
h) = −f n · u′

h = −f u′
n = f ug

n
∼= − 1

2

δu2
h

δs
, (5.3)

where ug
n ≡ n · ug

h is the cross-stream component of ug
h. The quantity 1

2
|δu2

h/δs| is the
speed acceleration magnitude. Thus, along the dipole axis where κ ∼= 0, in the flow
u′

n = −ug
n > 0 in the rear region where δu2

h/δs > 0, but u′
n = −ug

n < 0 in the frontal
region where δu2

h/δs < 0.
As a consequence, the rotated ageostrophic velocity

k × u′
h = k × (u′

s s + u′
nn) = −u′

ns + u′
sn,

points out from the vortex cores in the vortical region away from the dipole axis, where
the curvature acceleration dominates over the speed acceleration (thus |u′

s | > |u′
n|).

However, k × u′
h is counter flow at the entrance, and along flow at the dipole exit,

on the along-dipole line where the speed acceleration dominates over the curvature
acceleration (thus |u′

n| > |u′
s |).

The above results concerning k × uh, k × ug
h, and k × u′

h apply also to ω̃h, ω̃
g
h,

and ω̃′
h, respectively (figure 10). This is so because, neglecting the vertical velocity

contribution, it follows that ω̃h 	 k × ũhz, where ũhz ≡ ∂ ũh/∂z. The vertical shear
uhz = uhz s + uhΘZ n, where ΘZ ≡ n · ∂s/∂z is the backing or horizontal rotation
of uh along the vertical k-line. In mesoscale oceanic flows, where isopycnals are
approximately tangent to the flow, the backing term uhΘZ is usually smaller than
the shear speed uhz ≡ ∂uh/∂z, so that uhz points mainly in the same direction
as uh (the horizontal velocity increases with z in the lower half of the vortex,
z < 0). Therefore ω̃′

h is in the same direction as k × u′
h. In C2 these distributions
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(a) (b)

Figure 11. Horizontal distribution (C2) at z = −0.21 (iZ = 240) of (a) uh (max{|uh|} = 3.0,
δuh =0.5); and (b) Ah = ω̃′

h (max{|Ah|} = 0.98). Only every 10 vectors is plotted.

(figure 11) have qualitatively a similar behaviour, though in this case the horizontal
speed (figure 11a) has a greater axial symmetry than in C1 (figure 9a).

The crucial point relative to the frontal wave generation, and to the upwelling and
downwelling areas u and d, is the pattern of Ah = ω′

h along the dipole axis. Owing to
the ageostrophic motion explained above, the vector Ah rotates anticyclonically as
the fluid particle moves along the dipole axis. This is clearly visible in C2 (figure 11b),
and more noticeable on the anticyclonic side of the dipole axis in C1 (figure 10c).
When this rotation is performed in a time period close to the inertial period (or
Rossby number |R| approaching 1), this ageostrophic motion can be the ‘first push’
triggering the IGWs. The scaling of the frontal wave amplitude with the Rossby
number is an open question however. Thus, IGW generation is favoured on the
anticyclonic side of the along-dipole line, where the anticyclonic rotation of Ah is
increased in the dipole core thanks to the additional contribution from the negative
curvature acceleration. We note that, like the horizontal velocity uh (A 4a), the rate of
change of Ah (2.3) displays an anticyclonic inertial mode when w and the nonlinear
terms on the right-hand side of (2.3) are small.

The above ageostrophic patterns imply that Ah is divergent (∇h · Ah > 0) at the
dipole centre and, from (2.6a), that ζ ′

z has a relative minimum (black symbol in
figure 12a). This implies that a fluid particle moving along the dipole axis experiences
a decrease of ζ ′

z (dζ ′
z/dt < 0) as it approaches the dipole centre, and an increase of ζ ′

z

(dζ ′
z/dt > 0) as it leaves the dipole centre. By virtue of (4.1) this implies a contribution

of Lq{w} ≡ c2∇2
hw + wzz < 0 immediately before, and L{w}q > 0 immediately after,

respectively, the dipole centre. This in turn implies, since w =0 at z =0, that w > 0 and
w < 0, respectively, in these areas, which correspond to the upwelling and downwelling
regions labelled u and d. We note that, owing to the presence of the short-scale waves
in the distribution of ζ ′

z (figure 12a), the large-scale contribution of the advection of
ζ ′
z would be largely hidden in a figure displaying the distribution of dζ ′

z/dt or uh ·∇hζ
′
z,

unless a spatial average filter is applied to smooth the short scales. For this reason it is
preferable to analyse the importance of this term in w by solving the ω-equation (4.1)
which, implying a second order spatial integration, acts as a filter of the short-scales.

An alternative way of inferring the w pattern from the distribution of Ah is
from (2.6b) taking into account that ∇2w 	 ∂2w/∂z2. The horizontal vector field Ah

(figure 11b) has a curl with vertical component positive at the rear side, and negative
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Figure 12. Horizontal distribution (C2) at z = −0.21 (iZ = 240) of (a) ζ̃ ′
z = −∇h · Ah

(ζ̃ ′
z ∈ [−2.0, 1.9]); and (b) ∇2w̃ = −k · ∇h × Ah (∇2w̃ ∈ [−0.74, 0.60]).

(a) (b)

Figure 13. Horizontal distribution (C2) at z 	 −1.2 (iZ = 160) of (a) ζ̃ ′
z = −∇h · Ah

(ζ̃ ′
z ∈ [−37, 39]); and (b) ∇2w̃ = −k · ∇h × Ah (∇2w̃ ∈ [−23, 24]).

at the frontal side, of the dipole axis. This implies ∇2w < 0 (black ‘minus’ symbol in
figure 12b) and therefore w > 0 at the rear side (upwelling region u), with the opposite
sign (black symbol + in figure 12b) at the frontal side (downwelling region d ).

A second minimum in ζ̃ ′
z, of smaller length scale, occurs in shallow layers at the

frontal side of the dipole axis (white ‘minus’ symbol in figure 12a), but the wave front
is not further amplified at this depth. Instead, the wave perturbation is transmitted
to the deep layers and amplifies at the frontal side of the dipole, where stationary –
relative to the moving dipole – plane wave solutions with variable wavenumber in the
background flow are possible. These solutions require that the vertical shear of the
along-dipole component of the horizontal velocity, ∂u/∂z (aligning the x-axis along
the dipole axis) be similar to −N/f times its along-dipole derivative, ∂u/∂x (Viúdez
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Figure 14. Scatterplot of ∇2w̃ (y-axis) versus ζ̃ ′
z (x-axis) along the line (y, z) = (0, −0.2) in

C2. The large values correspond to the points on the horizontal line intersecting the frontal
wave packet. The axes aspect ratio is preserved. The dashed closed curve is an ellipse with

semi-axes (aX, aY ) = 20(
√

2, 1).

2007). In deeper layers the frontal wave packet therefore appears neatly at the front
of the dipole in both ζ̃ ′

z and ∇2w distributions (figure 13).

5.2. Phase relations between ζ̃ ′
z and ∇2w in the frontal wave packet

In mid-layers the frontal wave packet approximately satisfies plane wave solutions
with variable wavenumber in the background flow, as is deduced from the phase
relations between ζ̃ ′

z and ∇2w described next. These phase relations can be obtained
from the complex plane wave solutions χ̂ (x, t) ≡ χ̂0 exp(iθ (x, t)), where the phase
θ(x, t) ≡ k · x − ωlt , the wavenumber k = (k, l, m) ≡ ∇θ , and the local (or absolute)

frequency ωl ≡ −∂θ/∂t . As a function of D̂ the plane waves imply

ûh = (û, v̂) = f
m

k2
h

(
−l + i k

ωp

f
, k + i l

ωp

f

)
D̂ , ŵ = −i ωp D̂, (5.4a, b)

∇2ŵ = i K2 ωp D̂ ζ̂

f
= i m D̂, (5.4c, d)

ζ̂ g
z

f
= c2k2

h D̂,
ζ̂ ′
z

f
= −K2

(
ωp

f

)2

D̂, (5.4e, f )

Âh = (Â, B̂) =
K2

k2
h

ωp

f

(
l − i k

ωp

f
, −k − i l

ωp

f

)
D̂ = −K2

m

ωp

f 2
ûh (5.4g)

where the squared horizontal wavenumber k2
h ≡ k2 + l2, squared total wavenumber

K2 ≡ k2
h + m2, and the frequency relative to the fluid particle ωp ≡ −dθ/dt (or intrinsic)

satisfies the dispersion relation

ω2
p =

k2
hN

2 + m2f 2

K2
.

Relations (5.4) correspond to the usual plane wave solutions except that the
frequency relative to the fluid particle ωp is used instead of the local frequency
ωl . Aligning the x-axis along the dipole axis (l = 0) these relations are approximate
solutions with horizontal and vertical wavenumbers k and m that depend on the
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t = 6 t = 7

t = 8 t = 9

t = 10 t = 11

Figure 15. For caption see facing page.
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t = 12 t = 13

t = 14 t = 15

t = 16 t = 17

Figure 15. Time evolution of w(x, y) at z = −1.18 (iZ = 161) for C2. Time in Tip ,

w ∈ [−5.4, 7.5] × 10−3.
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background horizontal flow,

k(x, z) = − ωp

u(x, z) − U
,

m(x, z)

−k(x, z)
= c ⇒ ω2

p =
2f 2

1 + c−2
∼= 2f 2, (5.5)

where U is the speed of displacement of the dipole. The above relations assume
that the wave frequency relative to the dipole reference frame is zero (that is, that
the frontal wave packet remains stationary in this frame), so that the advection
of the wave phase by the background flow relative to the dipole reference frame
(u − U )k = (u − U ) ∂θ/∂x equals −ωp . Since ωp is constant, if u decreases along
the dipole axis then k has to increase. This kinematic effect is similar to that of a
pendulum oscillating with constant frequency along the y-axis and simultaneously
moving with velocity u along the x-axis. Kinematically, as u slowly decreases, the
wavenumber in the x-direction (k) must increase since the x-distance per unit time
(proportional to the oscillating period) decreases.

Relations (5.5) imply the ratio

ζ̂ ′
z

∇2ŵ
=

∇h · Âh

k · ∇h × Âh

= i
ωp

f
∼= i

√
2. (5.6)

There is therefore a phase difference of π/2 between the wave distributions of ζ̃ ′
z and

∇2w̃, with the amplitude of ζ̃ ′
z approximately

√
2 times larger than the amplitude

of ∇2w̃, as can be inferred from a scatterplot of the values of ∇2w̃ versus ζ̃ ′
z along

the dipole axis at mid depth (figure 14). Note that the ratio
√

2 is preserved as the
wavenumber k changes.

6. Time evolution of the frontal wave packet
The unsteady generation of the frontal wave packet at mid depth can be followed

from the time series of w during 12 inertial periods (figure 15) and interpreted in
a way consistent with the hypothesis that the wave originates in the shallow layers.
From t = 6 Tip to t = 7 Tip the wave packet develops at mid depth with amplitude
growing first in the frontal part of the dipole, as the wave is carried downwards
by pressure perturbations, and horizontally forward in an advective way by the fast
particles moving along the dipole axis. Simultaneously with the wave motion, the fluid
particles also experience the balanced vertical velocity of the mesoscale background
dipolar flow, namely the quadrupolar pattern seen in these images as four large-scale
light and dark areas at the apices of the vortices.

As the amplitude of the frontal wave packet continues increasing (from t = 8 Tip

to 9 Tip) the wave is introduced into the vortices by the rotating, slower moving
fluid particles which acquired the wave perturbation when they were located close
to the dipole axis. The wave amplitude develops in the vortices both tangentially,
that is circularly as the wave is carried in an advective way by the oscillating
fluid particles, as well as normally, that is towards the vortex centres by pressure
perturbations. Therefore the wave spiralling inside the vortices develops over a
time interval longer than the time the frontal wave takes to develop ahead of the
dipole. The spiral wave takes at least 8 Tip (from t =5 Tip to t = 13 Tip) to completely
develop.

The development of the spiralling of the frontal wave packet inside the vortices
occurs more smoothly in the cyclone than in the anticyclone. This is because, in
this case, the anticyclone experiences, more violently than the cyclone, the phase
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oscillations appropriate to the dipole heading, which involves changes in the geometry
of the vortices. The dipole heading has a period of approximately 4 Tip . Every heading
period the cyclone emits spontaneously two bursts of small-amplitude IGWs that
propagate away from the vortical flow as wave packets. A first burst is emitted
northward towards the dipole axis at t = 10–11 Tip and, 4 Tip later, at t = 14–15 Tip .
The second wave packet is radiated southward off the dipole at t = 13 Tip and, 4 Tip

later, at t = 17 Tip .

7. Concluding remarks
In rotating stably stratified flows the baroclinic dipole is a paradigmatic case of

a coherent vortex structure where the largely ageostrophic, but otherwise balanced,
flow spontaneously generates a stationary, relative to the dipole frame of reference,
packet of inertia–gravity waves. It is suggested here that the short-scale frontal wave
packet, clearly identified from the background flow at mid-depths, is originated by
the large-scale balanced flow in the shallow layers, owing to the sudden acceleration
and deceleration experienced by the fluid particles as they move along, or close to,
the dipole axis. The IGW generation is favoured on the anticyclonic side of the
dipole axis thanks to the combined effect of the speed and centripetal accelerations
which causes an anticyclonic rotation of the horizontal ageostrophic vorticity vector
in a time scale of about one inertial period. It is therefore inferred that the frontal
wave packet first originates when the horizontal advective acceleration becomes
large enough to become comparable with, though still smaller than, the Coriolis
acceleration. When this happens the velocity time scale, relative to the fluid particle,
is close to the inertial period, so that inertia–gravity waves with frequency close
to the inertial frequency are amplified in the frontal part of the dipole and inside
the vortices wherever these are dynamically allowed by the background vortical
flow.

Since the initial wave excitation only contributes to the total density and three-
dimensional velocity fields as a small perturbation, the origin and development
of the frontal wave packet is better observed in ageostrophic variables of smaller
magnitude, like the differential ageostrophic component of the vertical vorticity or
the Laplacian of the vertical velocity. An analysis of the rate of change of the
differential ageostrophic vorticity of the fluid particle (the ω-equation) shows that
this material rate of change is as large, in some places, as the larger QG terms in
the ω-equation. In balanced dynamics the material rate of change of ageostrophic
vorticity is of second order in the ω-equation however. The large amplitudes of this
rate of change at the dipole axis suggest that they are in fact the initial stages of the
frontal wave packet, with the only difference that their spatial scales are larger than
the short-scale wavelengths of the fully developed frontal wave packet ahead of the
dipole at mid-depths.

The amplitude of the wave packet is effectively enhanced when the ratio between
the relative acceleration and the Coriolis acceleration becomes close to unity, or
Rossby number approaching 1, though the development of a weaker frontal wave
packet does not require the flow to become inertially unstable. Thus, the frontal wave
packet, having a wave momentum opposite to the dipole’s, effectively reduces the
speed of displacement of the dipole even before the limit of inertial instability is
reached.
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Appendix. Theoretical basis of the numerical model
A.1. Basic equations

We consider the isochoric (volume-preserving) motion of a stable stratified fluid in a
reference frame rotating with constant angular velocity f/2 around the vertical z-axis
with respect to an inertial frame. The density anomaly ρ ′ is defined as

ρ ′(x, t) ≡ ρ(x, t) − �Z z − ρ0, (A 1)

where ρ is the mass density, and ρ0 > 0 and �Z < 0 are given constants. We introduce
the pressure anomaly p′ as the pressure p (including the centripetal potential) minus
the hydrostatic pressure due to a constant vertical density stratification

p′(x, t) ≡ p(x, t) + g
(
ρ0 + 1

2
�Zz

)
z, (A 2)

where g is the acceleration due to gravity. The Boussinesq approximation in the
vertical component of the momentum equation is

− 1

ρ

(
∂p

∂z
− gρ

)
∼= −α0

(
∂p

∂z
− gρ

)
= −α0

∂p′

∂z
− α0gρ

′ , (A 3)

where α0 ≡ ρ−1
0 is a constant specific volume. Vector components here always refer to

Cartesian components. The basic equations are the non-hydrostatic balance of linear
momentum in a rotating frame under the f -plane and Boussinesq approximations,
the mass conservation equation, and the isochoric condition:

duh

dt
+ f k × uh = −α0 ∇hp

′ , (A 4a)

dw

dt
= −α0

∂p′

∂z
− α0gρ

′ , (A 4b)

dρ

dt
+ ρ ∇ · u = 0 , (A 4c)

∇ · u = 0. (A 4d)

The initial unknowns are the three-dimensional velocity field (u, v, w), the pressure
anomaly p′, and the density anomaly ρ ′. Symbol d( )/dt ≡ ∂( )/∂t + u · ∇( ) denotes
the material time derivative (in the rotating frame).

A.2. Mass conservation

It is convenient to express ρ in terms of the field d defined by

d ≡ (ρ − ρ0)/�Z; (A 5)

d(x, t) represents the depth, or vertical location, that an isopycnal located at x at time
t has in the reference density configuration defined by ρ0 +�Zz. Thus, the density field
is expressed in terms of distances. The displacement D of isopycnals with respect to
the reference density configuration is defined as

D(x, t) ≡ z − d(x, t). (A 6)

D(x, t) is the vertical displacement of the isopycnal currently located at (x, t) with
respect to its reference position. The incompressibility condition dρ/dt = d(d)/dt = 0
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is expressed in terms of D as

dD
dt

= w. (A 7)

The vertical displacement of isopycnals D is related to ρ by

N2(D(x, t) − z) = g

(
ρ(x, t)

ρ0

− 1

)
, (A 8)

where N2 ≡ −α0 g�Z is the square of the constant background Brunt–Väisälä
frequency.

A.3. Geostrophic quantities

For any quantity χ let χ̃ ≡ χ/f . The geostrophic velocity shear is defined through the
thermal wind expression

∂ ũg

∂z
≡ −c2k × ∇hD = c2

(
∂D
∂y

, −∂D
∂x

)
, (A 9)

where c = ε−1 ≡ N/f . The relative pseudovorticity is the vorticity of the horizontal
velocity, defined in Cartesian components as

ζ ≡ ∇ × uh =

(
−∂v

∂z
,
∂u

∂z
,
∂v

∂x
− ∂u

∂y

)
. (A 10)

The horizontal gradient of D (times c2) may be interpreted as the dimensionless
horizontal geostrophic pseudovorticity

ζ̃
g
h =

(
−∂ṽg

∂z
,
∂ũg

∂z

)
= ω̃

g
h = c2∇hD. (A 11)

Since ζ is solenoidal (∇ · ζ = 0) the horizontal divergence of ζ̃
g
h is equal to (minus)

the differential geostrophic vertical vorticity,

−∇h · ζ̃
g
h =

∂

∂z

(
∂ṽg

∂x
− ∂ũg

∂y

)
=

∂ζ̃ g

∂z
= ζ̃ g

z = −c2∇2
hD. (A 12)

Using (A 7) it follows that the rate of change of ∇D is

d

dt
∇D = ∇w − ∇u · ∇D. (A 13)

The horizontal component of the above equation expresses the rate of change of ζ̃
g

h. It
is used below to obtain the rate of change of the dimensionless horizontal ageostrophic
vorticity ω̃′

h ≡ ω̃h − ω̃
g
h = ω̃h − c2∇hD, where the relative vorticity ω ≡ ∇ × u.

A.4. The vorticity equation

The vorticity equation consistent with (A 4) is

dω̃

dt
= ω̃ · ∇u +

∂u
∂z

+ f c2k × ∇hD, (A 14)

and is used next to express the material rate of change of ω̃′
h.

A.5. The horizontal ageostrophic vorticity potentials

The three-dimensional vector potential ϕ = (ϕ, ψ, φ) and its Laplacian A are
introduced by the definitions

A = (A, B, C) ≡ ∇2ϕ = (∇2ϕ, ∇2ψ, ∇2φ) ≡ ω̃ − c2∇D. (A 15)
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From the divergence of (A 15), and using the vector identity

∇2ϕ = ∇(∇ · ϕ) − ∇ × ∇ × ϕ, (A 16)

we obtain

c2D = −∇ · ϕ, ũ = − ∇ × ϕ. (A 17a, b)

Thus, c2D is the source of −ϕ, and −ϕ is the velocity potential of ũ. Consequently, c2D
may be interpreted as the source of the velocity potential of ũ. Because of (A 11), the
horizontal vector Ah = (A, B) is the dimensionless horizontal ageostrophic vorticity

Ah = ∇2ϕh = ω̃h − ω̃
g
h = ω̃′

h. (A 18)

Combining (A 13) with (A 14), the rate of change of A is

dA
dt

= −f k × Ah + (1 − c2)∇w + ω̃ · ∇u + c2∇u · ∇D. (A 19)

The horizontal component of (A 19) is (2.3). The main advantages of these prognostic
equations is that they allow us to use the potential vector ϕ so that volume
conservation is implicit, both three-dimensional velocity and vertical displacement
are obtained directly from ϕ, and the inversion of the horizontal potentials is easy
(symbolically, ϕh = ∇−2Ah). The third prognostic equation is the explicit material
conservation of the PV anomaly by contour advection on isopycnals (d�/dt = 0), so
that large PV gradients are not severely smoothed by diffusion. The disadvantage
of this formulation is that the computation of the right-hand side of (2.3) and the
inversion of the PV anomaly (2.4) are numerically costly.
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